### Dose Response Analysis for Combination Products

#### Susan Willavize, Ph.D. BASS XIV Nov 5, 2007

# Scope

- Two drugs in a fixed dose combination
- At least one of the drugs is effective alone
- One (continuous) clinical endpoint
- Assume there is no PK interaction
- Literature review

### **Example Combination Drug Product**

Vytorin

Ezetimibe – inhibits cholesterol absorption Simvastatin – inhibits cholesterol production

Indication: Hypercholestrolemia

Doses: 10/10, 10/20, 10/40, 10/80

| Vytorin (eze/simva) * | 10/10 | 10/20 | 10/40 | 10/80 |
|-----------------------|-------|-------|-------|-------|
| Lowering of LDL(%)    | -45   | -52   | -55   | -60   |
| Ezetimibe *           | 10 mg |       |       |       |
| Lowering of LDL(%)    | -39   |       |       |       |
| Simvastatin *         | 10 mg | 20 mg | 40 mg | 80 mg |
| Lowering of LDL(%)    | -33   | -34   | -41   | -49   |

[\* Vytorin label (PDR)]

# Outline

- Central Questions
- Multiple comparison procedures (MCP)
  - Minimum efficacious dose combination (MED)
  - Therapeutic synergy and contribution
- Modeling methods
  - Polynomial response surface
  - Mechanistic modeling
  - Empirical synergy
- Conclusions

### What do Regulators Want?

- 21 CFR 300.50 and ICH E4 (1994) require that 'each component make a <u>contribution</u> to the claimed effects'
- at the fixed doses, the combination must be superior to each of its two components alone at the same dose.
- Eff(d1, d2) > Eff(d1, 0) and Eff(d1, d2) > Eff(0, d2)

# Central Questions (part 1)

#### Multiple Comparisons

- 1. Is there evidence that each drug contributes at some dose combination? (comparators are each drug alone)
- 2. What dose combinations give better results than each drug alone (at the same dose)?
- 3. Is there a dose combination that is *therapeutically synergistic*?

<u>Therapeutic synergy</u>: effect of combo is greater than max effect achievable by either component [Laska et al 1997 Stat in Med 16:2211-2228]

[Adapted from Ruhberg 1995 & Pinheiro et al 2005]

### Central Questions (part 2)

Modeling

- 4. What response models give good predictions?
- 5. What is the optimal dose combination?
- 6. What do the results contribute to the understanding of the mechanism of action of the drugs alone or in combination?

[Adapted from Ruhberg 1995 & Pinheiro et al 2005]

#### MCP methods

- Provide assessment of contribution and therapeutic synergy
- Treat dose as categorical
- Less sensitive to assumptions
- Requires less prior knowledge
- Allow for strong control of FWER

#### Minimum Efficacious Dose (MED) combo

MED = "lowest" dose combination where both drugs contribute

K x N combo drug trial with Drug A at doses i = 0, ..., KDrug B at doses j = 0, ..., Nparallel groups of n subjects

mean response  $\mu_{ij}$  (monotone)

|   | 0          | 1          | •••             | Ν               |
|---|------------|------------|-----------------|-----------------|
| 0 |            | $\mu_{01}$ | $\mu_{0s}$      |                 |
| 1 | $\mu_{10}$ | $\mu_{11}$ |                 |                 |
|   | $\mu_{r0}$ |            | μ <sub>rs</sub> |                 |
| K |            |            |                 | μ <sub>KN</sub> |

expected gain 
$$\theta_{ij} = \min(\mu_{ij} - \mu_{i0}, \mu_{ij} - \mu_{0j})$$
  
dose (r,s) = MED if  $\theta_{rs} > 0$  and  
 $\theta_{ij} = \theta_{rj} = \theta_{is} = 0$  for all i < r, j < s  
Then these are the lowest doses where  
both drugs contribute

 $\mu_{\rm rs} > \mu_{\rm r0} , \qquad \mu_{\rm rs} > \mu_{\rm 0s}$ 

[Soulakova and Sampson (2007) Stat in Biopharm Res]



#### AVE Test for MED Dose Combos



Decision Tree for 2x2

[Soulakova and Sampson (2007) Stat in Biopharm Res]

#### Example: AVE Test for MED Dose Combo



Last rejected Ho gives estimated MED dose combo

[Adapted from Soulakova and Sampson (2007) *Stat in Biopharm Res*] <sup>11</sup>

2

3.03

### Pairwise Test for Contribution or for Therapeutic Synergy

Therapeutic Synergy: Effect of combo is greater than max effect achievable by either component ( $\mu_{A0}$ ,  $\mu_{0B}$ )

$$\begin{array}{lll} \mathsf{H}_{0} = & \mathsf{H}_{01} : \mu_{rs} \leq \mu_{A0} & \cup & \mathsf{H}_{02} : \, \mu_{rs} \leq \mu_{0B} \\ & & \mathsf{H}_{1} : \, \mu_{rs} > \mu_{A0} & \text{and} & \mu_{rs} > \mu_{0B} \end{array}$$

Test  $H_{01}$  and  $H_{02}$  at  $\alpha$ -level to get an  $\alpha$ -level of  $H_0$ Under normality assumptions these can be two t-tests A similar procedure provides test of contribution for a specific combination

[MIN test: Laska et al 1997 Stat in Med 16:2211-2228]

### **Example Test for Therapeutic Synergy**

| Treatment         | Lowering<br>LDL (%) | Compare to combo |  |
|-------------------|---------------------|------------------|--|
|                   | 150)                | p-value          |  |
| Eze (10 mg)       | -18.9               | <0.001           |  |
| Simva (80 mg)     | -48.5               | <0.001           |  |
| Eze/Simva (10/80) | -60.2               |                  |  |

- > Assume 10 mg Eze and 80 mg Simva as providing maximal effect when given alone
- > the combo is better than each of these alone
- > conclude Therapeutic Synergy at p < 0.001</p>

[Adapted from Bays et al 2004 Clin Ther 20:1758-1773]

# Summary of MCP

- Useful even if few dose combinations are studied
- Provide assessments of contribution and of therapeutic synergy
- Closed series of tests can control FWER

# Modeling

- Dose as continuous
- Assume parametric form for relationships
- Requires better understanding/description of doseresponse relationship
- May be more useful for simulations and for planning future studies
- May provide a way to investigate the mechanism of action

# Types of modeling efforts

- Polynomial response surface modeling
- Mechanistic modeling
- Empirical synergy

### Response Surface Methods (RSM)

- Polynomial is fit to the 3 dimensional surface ("French curve")
- May provide a description of surface when number of doses is too few for fitting more mechanistic models
- No convergence issues
- No clear interpretation of parameter values
- Dangerous for extrapolation

### **Polynomial Response Surface**

$$\begin{split} \mathsf{E}_{\mathsf{k}} &= \beta_0 + \beta_1 \ \mathsf{dose}_{1\mathsf{k}} + \beta_2 \ \mathsf{dose}_{2\mathsf{k}} + \beta_3 \ \mathsf{dose}_{1\mathsf{k}} \ \mathsf{dose}_{2\mathsf{k}} \\ &+ \beta_4 \ \mathsf{dose}_{1\mathsf{k}}^2 + \beta_5 \ \mathsf{dose}_{2\mathsf{k}}^2 + \varepsilon_{\mathsf{k}} \quad \text{, for $\mathsf{k}$-th subject} \\ & \mathsf{Fitting by OLS or linear mixed effects} \end{split}$$

May be useful to scale doses to -1 to +1

- avoids numerical problems
- allows each drug to be evaluated in an equivalent manner.

 $X_{ik} = (dose_{ik} - mean(dose_{ik}))/(max(dose_{ik}) - mean(dose_{ik}))$ drugs i=1,2

### Example Combo Drug Study

Two drugs dosed in factorial combinations e.g. 16 parallel groups of subjects, 2 drugs: atorvastatin (AD), gemcabene (GD) 15 subjects per group

| AD | GD | AD | GD  | AD | GD  | AD | GD  |
|----|----|----|-----|----|-----|----|-----|
| 0  | 0  | 0  | 300 | 0  | 600 | 0  | 900 |
| 10 | 0  | 10 | 300 | 10 | 600 | 10 | 900 |
| 40 | 0  | 40 | 300 | 40 | 600 | 40 | 900 |
| 80 | 0  | 80 | 300 | 80 | 600 | 80 | 900 |

[Herman et al 2005, PAGE Meeting, Pamploma, Spain]

### Polynomial Response Surface Fit

| Parameter    | Estimate | SE       | p-value |
|--------------|----------|----------|---------|
| Intercept    | -3.03    | 6.78     | 0.656   |
| Atorva (AD)  | -1.18    | 0.124    | <0.0001 |
| Gemca (GD)   | -0.0295  | 0.00984  | 0.003   |
| AD*AD        | 0.00935  | 0.00140  | <0.0001 |
| AD*GD        | 0.000203 | 8.80E-05 | 0.0222  |
| GD*GD        | 1.18E-05 | 1.02E-05 | 0.245   |
| Baseline LDL | -0.0791  | 0.0353   | 0.0259  |

Response variable is percent change in LDL

Parameters significant except quadratic term on GD (this term could be dropped)

### Predicted Maximum Effective Combo

Predicted value:

Stationary point: AD = 54.8 mg, GD = 776 mg;-60.8 (% change in LDL)

For confidence region on dose levels for maximum combo see: Peterson et al 2002 Biometrics 58:422-431

#### By comparison

| Vytorin (eze/simva) * | 10/10  | 10/20  | 10/40  | 10/80 |
|-----------------------|--------|--------|--------|-------|
| Lowering of LDL(%)    | -45    | -52    | -55    | -60   |
| Atorvastatin *        | 10 mg  | 20 mg  | 40 mg  | 80 mg |
| Lowering of LDL(%)    | -39    | -43    | -50    | -60   |
| Gemcabene             | 300 mg | 600 mg | 900 mg |       |
| Lowering of LDL(%)    | -18    | -25    | -31    |       |

[\* Product labels (PDR)]

### **3-D Surface Plot**



### **Contour Plot**



# Summary of Polynomial RSM

- Provide a description of 3-D effect surface
- Allow for interpolation and prediction of optimal dose combination
- Parameter values have little meaning
- Need to check for lack of fit and consider relevance to physiology

# Mechanistic Modeling

- Drug1 + Drug2 + System = Combined Response
- Quite elaborate system models have been devised to describe and predict biology and the actions of drug.
- For illustrative purposes we will discuss only a few very simple models.

### Indirect Response Models

#### Homeostatic System



System is in equilibrium until addition of drug perturbs the system.

# Indirect Response Models System and Action of Drug 1



[Dayneka et al 1993 JPB 21:611-635]

#### Joint action involving different processes

5



[Earp et al 2004 JPP 31:345-380]

#### Joint action involving the same process (non-competitive)



29

#### Steady-state Dose-Response

$$Css = Dose^*F/(CL^*\tau) = (Dose/\tau)/(CL/F)$$

$$\frac{dR}{dt} = k_{in} \{1 + H_1(C_1)\} - K_{out} \{1 + H_2(C_2)\} R$$

where 
$$H_n(C_i) = -\lim_{i \to \infty} \frac{C_i}{C_i} / (IC50_i + C_i)$$
  
or  $= \operatorname{Smax}_i C_i / (SC50_i + C_i)$   
then  $\frac{R_{ss, \max}}{R_o} = \frac{1 + H_1(C_1)}{1 + H_2(C_2)}$  for different processes

or 
$$\frac{R_{ss, \max}}{R_o} = \{1+H_1(C_1)\}\{1+H_2(C_2)\}$$
 if both on  $K_{in}$   
and  $\frac{R_{ss, \max}}{R_o} = \frac{1}{\{1+H_1(C_1)\}\{1+H_2(C_2)\}}$  both on  $K_{out}$   
[Earp ibid]

30



Simulated data shows that amount of interaction varies with dose levels

### Summary of Mechanistic Modeling

- Parameter values have biological meaning
- Best done with time course data and data from several dose levels
- Can lead to a better understanding of the mechanism of action

### **Empirical Assessment of Synergy**

"The Search for Synergy" something more than expected

Starts with choice of "what is expected"

- Loewe Additivity
- Bliss Independence

[Greco et al 1995]

### Loewe Additivity

Implies that each drug contributes to joint action independently in accord with its individual potency.

 $d_1 + d_2 \rho = \text{dose of drug 1 equiv to } (d_1, d_2)$  , where  $\rho = \text{rel. potency}$ 

 $D_1$  and  $D_2$  are equi-effective doses of two individual drugs  $(d_1, d_2)$  dose pairs that in combination give the same effect as dose  $D_1$  alone or dose  $D_2$  alone

$$\frac{d_1}{D_1} + \frac{d_2}{D_2} = I$$

I = 1, implies additivity I < 1, synergism

I > 1, antagonism

Can roll in dose response functions for each drug alone and estimate them in pooled dataset simultaneously with *I* (using a root finder). URSA method: Greco et al 1990



### Bliss Independence (one of many forms)

Combined response *C* for two single compounds (Drugs 1 and 2) with effects *A* and *B* is

 $C = A + B + \alpha A^*B^*0.01$ 

 $\alpha = 1$  for independence

 $\alpha$  < 1 for synergy  $\alpha$  > 1 for antagonism

```
where each effect is expressed as a percentage decrease (-100,0)
```

Example:

```
Drug 1 causes a 50% decr in LDL
Drug 2 causes a 30% decr in LDL
```

```
If acting independently

100mg/dL \Rightarrow 50mg/dL \Rightarrow 35mg/dL

(a 65% decr)

(-50) + (-30) + (1)(1500)(0.01) = -65
```

```
Can roll in dose response functions for each
drug alone, e.g. Effect = Emax*Dose/(ED50 +
Dose)
```

#### Atorvastatin-Gemcabene Bliss Independence Model



#### Assumptions of Empirical Synergy Methods

Both Loewe additivity and Bliss independence:

 interaction relationship is the same quality and magnitude at all dose levels of both components

Loewe additivity:

 the individual dose-response curves have "parallelism", e.g. Emax1 = Emax2 and shapes of effect curves are similar

Extensions overcome the these issues by increasing number of parameters White et al (2003): adds up to ~30 parameters Kong and Lee (2006): adds up to 9 parameters

#### Empirical Synergy versus Therapeutic Synergy

|                  | Bliss<br>independence<br>factor (α) * | Loewe<br>additivity factor<br>(I)  | Empirical<br>Synergy<br>(Bliss/Loewe) | Therapeutic<br>Synergy |
|------------------|---------------------------------------|------------------------------------|---------------------------------------|------------------------|
| Atorva-<br>Gemca | 1.69<br>(1.49, 1.88)<br>antagonism    | 0.696<br>(0.448, 0.944)<br>synergy | antagonism /<br>synergy               | No                     |
| Simva-<br>Eze    | 1<br>independence                     | Not available                      | independence<br>/ not assessed        | Yes                    |

[\* Mandema et al 2005]

#### versus Contribution

| Atorva- | Dose    | 10/600 | 40/900 | 80/900 | N = ~15 |
|---------|---------|--------|--------|--------|---------|
| Gemca   | p-value | 0.02   | 0.05   | 0.19   |         |
| Simva-  | Dose    | 10/10  | 40/10  | 80/10  | N= ~150 |
| Eze **  | p-value | <0.001 | <0.001 | <0.001 |         |

[\*\*Adapted from Bays et al 2004]

#### Summary of Empirical Synergy Methods

- Provides a way to combine the dose response curves of each drug alone and predict the response surface of the combination
- Gives one number to represent synergy level
- Applicable where relationships between dose and effect appear simple and direct
- Extensions are available to broaden the assumptions
- Lack of empirical synergy does not imply that the two drugs do not contribute
- Empirical synergy is unrelated to therapeutic synergy.

### Conclusions

- Assessment of dose response for combo is best done with good prior understanding of component drugs
- MCPs exist for analysis of studies with few dose combinations
- RSM and mechanistic modeling methods allow for more complete description and understanding of dose response
- Empirical synergy may not predict therapeutic synergy or contribution